Identifying Teacher Questions Using Automatic Speech Recognition in Classrooms
نویسندگان
چکیده
We investigate automatic question detection from recordings of teacher speech collected in live classrooms. Our corpus contains audio recordings of 37 class sessions taught by 11 teachers. We automatically segment teacher speech into utterances using an amplitude envelope thresholding approach followed by filtering non-speech via automatic speech recognition (ASR). We manually code the segmented utterances as containing a teacher question or not based on an empirically-validated scheme for coding classroom discourse. We compute domain-independent natural language processing (NLP) features from transcripts generated by three ASR engines (AT&T, Bing Speech, and Azure Speech). Our teacher-independent supervised machine learning model detects questions with an overall weighted F1 score of 0.59, a 51% improvement over chance. Furthermore, the proportion of automatically-detected questions per class session strongly correlates (Pearson’s r = 0.85) with human-coded question rates. We consider our results to reflect a substantial (37%) improvement over the state-of-the-art in automatic question detection from naturalistic audio. We conclude by discussing applications of our work for teachers, researchers, and other stakeholders.
منابع مشابه
Semi-Automatic Detection of Teacher Questions from Human-Transcripts of Audio in Live Classrooms
We investigate automatic detection of teacher questions from automatically segmented human-transcripts of teacher audio recordings collected in live classrooms. Using a dataset of audio recordings from 11 teachers across 37 class sessions, we automatically segment teacher speech into individual teacher utterances and code each as containing a teacher question or not. We trained supervised machi...
متن کاملA Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملDesigning and implementing a system for Automatic recognition of Persian letters by Lip-reading using image processing methods
For many years, speech has been the most natural and efficient means of information exchange for human beings. With the advancement of technology and the prevalence of computer usage, the design and production of speech recognition systems have been considered by researchers. Among this, lip-reading techniques encountered with many challenges for speech recognition, that one of the challenges b...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملTeaching strategies in inclusive classrooms with deaf students.
The purpose of this study was to investigate teacher speech and educational philosophies in inclusive classrooms with deaf and hearing students. Data were collected from language transcripts, classroom observations, and teacher interviews. Total speech output, Mean Length Utterance, proportion of questions to statements, and proportion of open to closed questions were calculated for each teache...
متن کامل